43 research outputs found

    Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering

    Get PDF
    In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa

    Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation

    Get PDF
    A key aspect of cancer metastases is the tendency for specific cancer cells to home to defined subsets of secondary organs. Despite these known tendencies, the underlying mechanisms remain poorly understood. Here we develop a microfluidic 3D in vitro model to analyze organ-specific human breast cancer cell extravasation into bone- and muscle-mimicking microenvironments through a microvascular network concentrically wrapped with mural cells. Extravasation rates and microvasculature permeabilities were significantly different in the bone-mimicking microenvironment compared with unconditioned or myoblast containing matrices. Blocking breast cancer cell A[subscript 3] adenosine receptors resulted in higher extravasation rates of cancer cells into the myoblast-containing matrices compared with untreated cells, suggesting a role for adenosine in reducing extravasation. These results demonstrate the efficacy of our model as a drug screening platform and a promising tool to investigate specific molecular pathways involved in cancer biology, with potential applications to personalized medicine.National Cancer Institute (U.S.) (Grant R33 CA174550-01)National Cancer Institute (U.S.) (Grant R21 CA140096)Italian Ministry of HealthCharles Stark Draper Laboratory (Fellowship

    Carcinoma cuniculatum of the larynx

    Get PDF
    Carcinoma cuniculatum (CC) is a rare clinicopathologic variant of squamous cell carcinoma. Histologically, it is characterized by invasive growth of bland, acanthotic, and keratinizing squamous epithelium that forms multiple rabbit burrow-like, keratin-filled crypts and sinuses. We present a 51-year-old male smoker with CC of the left vocal cord. The tumor was staged T1a and the patient was disease-free 12 months after surgery. To our knowledge, this is the fourth case of CC of the larynx reported in the English literature and the first, due to its early diagnosis, where radical surgery was not performed. We highlight the necessity for awareness of this entity and coordination between otolaryngologists, radiologists, and pathologists for early diagnosis and organ-sparing surgical treatment

    Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium

    Get PDF
    The integration of vascular structures into in vitro cultured tissues provides realistic models of complex tissue-vascular interactions. Despite the incidence and impact of muscle-wasting disorders, advanced in vitro systems are still far from recapitulating the environmental complexity of skeletal muscle. Our model comprises differentiated human muscle fibers enveloped by a sheath of human muscle-derived fibroblasts and supported by a vascular network with mural-like cells. Here, we demonstrate the induction of muscle-specific endothelium and the self-organization of endomysial muscle fibroblasts mediated by endothelial cells. We use this model to mimic the fibrotic environment characterizing muscular dystrophies and to highlight key signatures of fibrosis that are neglected or underestimated in traditional 2D monocultures. Overall, this vascularized meso-scale cellular construct finely recapitulates the human skeletal muscle environment and provides an advanced solution for in vitro studies of muscle physiology and pathology. Bersini et al. demonstrate the generation of a mesoscale model of the human muscle environment and prove its application for the study of fibrosis. This engineered muscle environment promotes the organ-specific differentiation of endothelial cells and the self-assembly of myofibers spontaneously wrapped by a continuous endomysium-like structure

    Mapping Protein Structure Changes with Cysteine Labeling Kinetics by Mass Spectrometry

    Get PDF
    Currently we observe a gap between theory and practices of patient engagement. If both scholars and health practitioners do agree on the urgency to realize patient engagement, no shared guidelines exist so far to orient clinical practice. Despite a supportive policy context, progress to achieve greater patient engagement is patchy and slow and often concentrated at the level of policy regulation without dialoguing with practitioners from the clinical field as well as patients and families. Though individual clinicians, care teams and health organizations may be interested and deeply committed to engage patients and family members in the medical course, they may lack clarity about how to achieve this goal. This contributes to a wide "system" inertia-really difficult to be overcome-and put at risk any form of innovation in this filed. As a result, patient engagement risk today to be a buzz words, rather than a real guidance for practice. To make the field clearer, we promoted an Italian Consensus Conference on Patient Engagement (ICCPE) in order to set the ground for drafting recommendations for the provision of effective patient engagement interventions. The ICCPE will conclude in June 2017. This document reports on the preliminary phases of this process. In the paper, we advise the importance of "fertilizing a patient engagement ecosystem": an oversimplifying approach to patient engagement promotion appears the result of a common illusion. Patient "disengagement" is a symptom that needs a more holistic and complex approach to solve its underlined causes. Preliminary principles to promote a patient engagement ecosystem are provided in the paper

    In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    No full text
    Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps

    Engineering the early bone metastatic niche through human vascularized immuno bone minitissues

    Get PDF
    Bone metastases occur in 65%-80% advanced breast cancer patients. Although significant progresses have been made in understanding the biological mechanisms driving the bone metastatic cascade, traditional 2Din vitromodels and animal studies are not effectively reproducing breast cancer cells (CCs) interactions with the bone microenvironment and suffer from species-specific differences, respectively. Moreover, simplifiedin vitromodels cannot realistically estimate drug anti-tumoral properties and side effects, hence leading to pre-clinical testing frequent failures. To solve this issue, a 3D metastatic bone minitissue (MBm) is designed with embedded human osteoblasts, osteoclasts, bone-resident macrophages, endothelial cells and breast CCs. This minitissue recapitulates key features of the bone metastatic niche, including the alteration of macrophage polarization and microvascular architecture, along with the induction of CC micrometastases and osteomimicry. The minitissue reflects breast CC organ-specific metastatization to bone compared to a muscle minitissue. Finally, two FDA approved drugs, doxorubicin and rapamycin, have been tested showing that the dose required to impair CC growth is significantly higher in the MBm compared to a simpler CC monoculture minitissue. The MBm allows the investigation of metastasis key biological features and represents a reliable tool to better predict drug effects on the metastatic bone microenvironment
    corecore